

It is possible for students to do well on conventional problems by memorizing algorithms without understanding of the underlying physics. Conceptual knowledge can improve a student's ability to perform calculations. It is decisive for those problems requiring a transfer of knowledge to new contexts. [Carr and McKagan, Am J Phy, 2009, E Mazur, Peer Instruction, 1997, Thacker et al, Am J Phys 1994]

Motivation: challenges in learning quantum mechanics

- May be perceived as abstract and far-removed from reality.
- · Counterintuitive outcomes of observations and theory.
- Students may become proficient at calculations, but still have difficulties interpreting their results conceptually.
- Large number of studies investigating student difficulties in quantum mechanics and interpretative understanding.
 e.g. Bao et al 2002; Domert et al 2005; McKagan et al 2008; Singh 2008, Baily and Finkelstein, 2009
- Research-based resource development (activities, animations and simulations, conceptual questions and surveys) e.g. Wuttiprim et al., 2009; Belloni et al 2006; Zhu and Singh, 2012

Potential of simulations

- Enhance engagement and exploration through interactivity and prompt feedback.
- Multiple representations, including visual representations of abstract concepts and microscopic processes that cannot be directly observed.
- Visualization of mathematically challenging processes (wave packets, time dependence) which are useful for gaining insight and physical intuition.
- Research-based development tailors resources to student needs.

Evaluation methods

Evaluation drives interface design and content. Evaluation outcomes used to optimize all animations.

- Student questionnaires in two qm courses, assessing student attitudes towards and use of the animations.
- An 11-item diagnostic survey to evaluate learning gains.
- Observation sessions with a small number of student volunteers, some of this work carried out at two institutions (the Universities of Edinburgh and St Andrews).
- Facilitation of a workshop session in which students work with two animations.

Student observation sessions Individual sessions with student volunteers, carried out in 2010 and 2012. - students asked to "think aloud" while interacting freely with a previously unseen animation - questions aimed to test whether graphs and explanations make sense - follow-up interview on experience with this and previous

 Consistency in issues raised. Outcomes used to optimize interface design and content of all animations.

animations

Diagnostic survey outcomes + reproducible result, explanations of reasoning of students that had used the animations showed greater understanding and not recall; greater confidence in their answer. - students had one hour more practice on these topics, survey a few days after the session. No comparison with other resources on the same topics.

The IOP New Quantum Curriculum Project

- Will provide learning and teaching materials for a modern approach to a first course in quantum mechanics starting from simple two-level systems.
- Text written by experts in the fields of quantum information theory and foundations of quantum mechanics
- Collaboration between the Universities of Sheffield, Loughborough, Leicester, St Andrews, York and University College London. St Andrews is developing animations for this project.
- Materials will be freely available on an IOP website summer 2013. Development and evaluation work will continue in the following years.

How experts differ from notives

Expert-novice differences in problem-solving ability well studied

[Chi et al. (1981); How people learn (2000)]

- Experts notice meaningful patterns of information
- Content knowledge that is organized around core concepts and conditionalized.
- Flexible retrieval of information, representational fluency
- Metacognition: monitoring one's level of understanding

Problem-solving ability

- Progress in teaching problem-solving skills
 [Heller et al. (1992), Leonard et al. (1996), Ogilvie (2009), Gaigher et al. (2007), Warren (2010)]
 and in assessing them
 [Docktor and Heller 2009].
- Video analysis to enhance problem-solving [eg Brown and Cox 2009, Wehrbein, W. M., 2001]

Development of problem-solving ability in second-level physics

- Since 2011/12: Bruce Sinclair and Antje Kohnle
 + BSc students Mark Gaskell and Christopher Hill
- Aims: improve and assess problem-solving ability in our level two physics. Introduce video problems to create more real-world context.

Explicit teaching of problem-solving strategies in second level physics

- 2011/12 year: Rubric-based tutor feedback form focusing on five areas of problem solving. Used for weekly formatively assessed tutorial sets.
- Semester 1: Weekly problem-solving strategy sheets.
 Little gain in tutor rubric scores.
 Issues: strategy sheets not read, not enough link to tutorial problems.
- Semester 2: Some questions explicitly asked students to implement aspects of problemsolving; "video problems" introduced.

Rubric-based tutor feedback form						
	1	2	3	4	5	
Solutions are not explanatory - just formulas with no text.		x				Explanatory solutions: explanatory text at key points to structure the solution, stating assumptions, defining variables.
No attempt made at qualitative reasoning.			х			Qualitative reasoning used to estimate the answer or possible range of answers prior to any calculation.
No sketches, graphs or diagrams. No other representation than mathematical is used.	x					Sketches, graphs and diagrams where required. These are fully labelled, legible and complete.
No units				х		Units checked to arrive at unit of end result. Units used in intermediate calculations. Units converted to SI units where needed.
No evaluation of work, or of end result.				x		Evaluation of work: discussion whether result makes physical sense. Checking that a formula works for special cases. Checking consistency using units.

Level 1 Group Discovery Project

- Three-week long Problem Based Learning (PBL) project, equivalent to 7-lecture course
- context-rich, real world, ill-defined problem, missing data
- open-ended or multiple paths
- group work
- modified role of tutors as facilitators

Timing

- · End of first year
- consolidation and synthesis of knowledge and skills learnt during the year
- requires learning new physics and numerical techniques + transferable skills

Project Aims

- Give students the chance to experience working like a real physicist (working in "research mode") and the freedom to come up with their own solution
- Enhance problem-solving skills as well as communication and team-working skills
- Enhanced student ownership, motivation, independent learning, empowerment
- Deeper learning

Group Discovery Project

- Information retrieval session (given by library staff)
- Introductory session: project aims, introductory exercises, students brainstorm the problem and plan next steps
- Workshop session
- Two facilitator sessions, students submit a group action plan prior to each session.
- Group report and oral presentation + questions.

Facilitators

- · Facilitator role is decisive
- Facilitator resources: facilitator guide, example solution, literature
- · Pre-meeting with facilitators
- Facilitator meeting after the first facilitator session with students

Group Discovery Project - Assessment

- Process and Content assessment
- Individual Facilitator sessions (10%)
- Group

Group action plans (10%) Group report (40%)

Group presentation with demonstration of their simulation and panel question session (40%) $\,$

 Group mark moderated by peer assessment using WebPA (http://webpaproject.lboro.ac.uk/)

Conclusions – Problem-based learning Using PBL in first year can give students insight into the research process in terms of creating a simple model, layering of complexity and sanity checks. It may enhance problem-solving and transferable skills We have found the following factors important: -timing at the end of the first year; groups with mixed degree intentions and abilities -explaining the reasons for doing this type of project

- -scaffolding the process (group action plans, timetabling)
- -careful choice of topic, availability of books/articles at appropriate level
- -staff facilitators. Pre-meetings and facilitator guide -clear grade descriptors for project report and orals

Conclusions – Teaching problem-solving

- Strategies made explicit in the tutorial problems.
- Tutor feedback and student perceptions show gains over semester, and more for the less-high achievers. Tutor scores and student perceptions agree. Greater gains in more algorithmic aspects of problem-solving.
- Video problems appreciated.
- Future work: pencasts to illustrate strategies such as qualitative reasoning and evaluation in different contexts; staged problems; more video, more explicit teaching of metacognition.

Conclusions – Conceptual understanding

- Conceptual understanding decisive for transfer ability.
- Many excellent multimedia resources exist
- · Developing effective resources: key is involving students in the development process, evaluation using different methods, revising animations due to evaluation outcomes as an iterative process.
- IOP New Quantum Curriculum project: coming summer 2013.
- Volunteers to trial QuVis animations and suggest improvements / topics for new animations always welcome!

